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Effects of Viscosity on Long Waves 
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S U M M A R Y  
A study of effects of viscosity on non-linear long waves is made. Beginning with the Navier-Stokes equations of motion, 
the long wave approximation is achieved by an expansion scheme similar to Friedrichs'. Non-linear solutions are ob- 
tained by applying the theory of relatively undistorted waves. It is found that shock formation is delayed by the viscous 
effect. Various conditions are obtained in determining the viscous, non-linear and radial decay effects on the solution 
for a shockless expansion wave-front propagating over large distances. 

1. Introduction 

In studying gravity waves, the fluid is generally assumed to be homogeneous and incompressi- 
ble in irrotational flow without viscosity. Even with these assumptions, the basic general theory 
is still difficult to handle because the non-linear boundary conditions are to be applied at an 
unknown free surface. Special hypotheses of one kind or another which have the effect of 
yielding more tractable mathematical formulations have been introduced. One approximate 
theory results from the assumption that the wave amplitudes are small (with respect to wave- 
length, for example) and this theory has contributed many useful results since its first develop- 
ment by Airy and Stokes in the middle of the nineteenth century. Another approximation is 
based on the assumption that the wave-length is large compared to the vertical extent of the 
fluid and this is called the "long wave" (or "Shallow water") approximation of Boussinesq and 
Rayleigh. The long wave theory has had applications in describing tidal and other large wave- 
length motions. Also, since this theory contains non-linear terms in the equations it has been 
used to describe large amplitude waves. However, there has been some controversy about the 
domain of validity of the theory [8], [14], [15]. Basically there are two distinct approaches 
to the theory. In the first, due to Friedrichs [9], the first order result of an expansion scheme 
yields Airy's theory which predicts that a progressive compression wave eventually breaks; 
the second order result is the existence of waves of permanent form. The small parameter involv- 
ed is essentially the ratio between the depth (H) and a horizontal length scale (L) (with H/Lr  1). 
In the second, due to Ursell [15], and Lin and Clark [10], the amplitude (a) is used as a third 
length scale and, hence, an additional parameter (a/L). Three different domains are then classif- 
fled: (1)Airy's theory belongs to the domain where (a/L)(H/L) -3 >> 1; (2) the theory of per- 
manent wave to (a/L)(H/L) -3 =0(1); and the linearized theory to (a/L)(H/L)-3~ 1. In all 
these domains H/L~ 1. 

It is relatively easy to introduce viscosity into the linearized approximation although the 
theory loses the elegance and power of potential theory and problems are more difficult to 
solve. A summary of elementary results of such works is given by Wehausen and Laitone [2]. 
The effect of viscosity on long waves has received little notice. In the book by Stoker [3], all 
treatments are for inviscid fluid; and for engineering problems of flood waves in rivers Chezy's 
empirical formula [-4] is used to estimate the viscosity terms. Another approach is to assume a 
shear profile in the basic flow; the wave motion is, however, assumed to be governed by inviscid 
equations [5], [6], [-7]. 

The serious problem encountered by considering viscosity in the long wave approximation 
can be seen from the nature of the governing equations. The first order inviscid equations (the 
shallow water equations) are hyperbolic, whilst the addition of viscous terms changes them to 
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parabolic. However, one can argue that since the shallow water equations describe longitudinal 
motions of vertically-averaged profiles, the effect of viscosity in changing these profiles should 
be estimated. This feature of considering averaged profiles is found useful in the viscous case 
since it allows a formulation in which the equations remain hyperbolic. 

The approach of the present study begins with the Navier-Stokes equations of motion. 
For the long wave approximation, we assume an expansion similar to Friedrichs'. That is to 
take as a small parameter the ratio of a typical depth (H0) to a characteristic length (Lo). 
Assuming that the ratio of the kinematic viscosity (v) to the product of a typical vertical velocity 
(Vo) and H 0 is bounded, a system of equations governing the motion of non-linear long waves is 
derived. The equations are integrated with respect to the vertical coordinate. The second 
derivative is converted into a boundary value. In this way the parabolic system is reduced to a 
hyperbolic system for vertically averaged values. 

Two-dimensional problems are investigated. Under a small amplitude expansion, the linea- 
rized solution for a flat bottom is obtained by Fourier's method. For an uneven bottom topo- 
graphy whose tangent is small a simple transformation reduces the problem to the previous 
case. Non-linear solutions are obtained by applying the theory of relatively undistorted waves. 
This theory enables an estimate to be found of the effect of the non-linearity in causing shocks 
(bores) to form, and also estimates the effect of the non-linearity on wave propagation over 
large distances. The viscosity effect on shock formation is investigated. It is found that when a 
wave-front propagates into a quiet region of an arbitrary bottom topography the presence of 
viscosity is to delay the breaking of such a wave-front. In inviscid theory [11], when a shockless 
expansion front propagates over large distances, the non-linear terms finally dominate the 
solution and one result is that the solution is independent of its initial data. However, thi s is not 
necessarily so for a viscous fluid. The non-linear effect may be overshadowed by the viscous 
effect, and the solution decays exponentially over large distances. Conditions are obtained in 
determining these effects on the solution. In the inviscid limit, results derived from the present 
approach are in agreement with those obtained by Varley and Cumberbatch [11], Burger [23] 
and Stoker [3]. 

For three-dimensional (axially symmetric) problems, similar techniques can be employed. 
In addition to viscous and non-linear effect, radial decay also plays a role for a shockless ex- 
pansion wave-front travelling over large distances. 

The result that viscosity delays the breaking of waves approaching a shoreline is in agreemnt 
with experiments. The results of Mei [24] for inviscid waves give breaking too far from the 
shore when compared with Iverson's experiments [25]. 

2. Formulation of the Problem 

2.1. Basic Equations and Boundary Conditions 

We shall assume that the fluid is homogeneous, incompressible and viscous with constant coef- 
ficient of viscosity. The entire motion will be regarded as two-dimensional. In a fixed coordinate 
system let the positive y-axis be directed upwards, i.e. opposite to the force of gravity, and let 
the ~-axis be identified with the undisturbed free surface. Let h(~) __> 0 be the undisturbed depth. 
The fluid is assumed to fill the space: 

-h(~)____ y__< ~(~, ~), - ~ < ~ < ~ ,  

and the vertical displacement of the free surface measured from the x-axis, y-- f/(~, D, is to be 
determined when the fluid is in motion. 

Let ~(2, y, ~) and ~(~, y, i) be the horizontal and vertical components of velocity, ~(~, y, ~) 
the pressure, p the density of the fluid, g the acceleration due to gravity, [ the time and v = #/p 
the kinematic coefficient of viscosity. 

Let there be characteristic horizontal and vertical velocities U o and V0, and a typical depth 
H o. Non-dimensional quantities may then be defined as follows: 
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x = ~/L o, y = y /H o, u = Fc/Uo , v = f;/V o, 

t = tUo/L o , p = ~/(pUg),  r I = q/Ho,  h= hlHo, 
where Lo is a characteristic length defined by Lo=HoUo/Vo. In addition, we introduce the 
parameter e= Ho/Lo. 

In terms of non-dimensional quantities, the Navier-Stokes equations of continuity and 
momentum take the form 

au ~3v 
+ ~ = 0 (1) & cy 

au au a u  Op ( ~ u  e2 azu~ aT + U~x + v ay ax + fl + (2) kay ~ ax2/ 

~7 + u ~ + ~ ~ - ay \ a / +  ~ axe/ (3) 

where f l= v/VoH o and k = g H o / U  o. 
The boundary conditions are as follows: 
(i) The kinematic condition on the free surface requires that 

(ii) 

at/ &l 
a t  + u ~x - o = 0 on y = tl(x, t). (4) 

If we assume the surface to be free of external stress and surface tension, then the compo- 
ponents of stress force in the fluid must vanish on the free surface, i.e. 

aq au a@_ x au) p ~  + / ~  + &~. - 2 ~  =o 

( _ 2 a v  au a_~x) ~x  &l p+&2 \ ay + ~ + ~4 --ax = O 

(iii) On the bottom there must be no slip, i.e. 

u = v = 0 o n y = - h ( x )  

(5) 

o n  y = n(x ,  t ) .  

(6) 

where we assume that the bottom is rigid, impermeable and stationary. 

(7) 

2.2. Long Wave Approximation 

In the following treatment, we shall assume that the depth of the fluid is small compared with a 
horizontal length scale, such as the wave-length (it is not necessary to assume the displacement 
and slope of the free surface are small). In other words, we shall assume that e is small. We note 
that the feature of the long wave approximation (or shallow water theory) is that the horizontal 
and vertical directions are not treated in the same way (i.e. the vertical and horizontal distances 
are scaled differently). 

There are many circumstances in nature for which such a theory provides a good model. 
Among such occurrences are the tides in the oceans, the large wave-length or solitrary waves, 
waves approaching beaches including the breaking of such waves [3], [161, [17], [18], [191, 
and airflow over mountains [1]. 

Our present approach is somewhat closer to Friedrichs' [9]. We adopt an iterative scheme 
for equations (1)-(7) which is based on e ~ 1 and shall consider only the first term. In addition 
to e, in later sections we consider a typical amplitude 6 as another parameter. Also, the inclusion 
of viscosity brings added complexity because of the new parameter fl = v/VoHo. 

We shall assume that fl is not too large, e.g. fl =0(1), such that ,g2fl terms in equations (1)-(7) 
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are negligible. Let us take a numerical example for the problem of a flood in a model of the 
Ohio River (p. 488 of [3]). For a constant slope of 0.5 ft/min, a constant breath of 1000 ft and 
an initial velocity of the water 2.38 mph, the propagation speed of small disturbance correspond- 
ing to the depth of 20 ft is 17.3 mph. If we take Ha = 20 ft, v = 1.08.10- 5 ft2/sec (at the tempera- 
ture 20~ and V0 to be (0.5/5280)'2.38 (this choice of V0 gives the largest value of/?) then 
fl=4.14. Hence, it seems to be reasonable to assume that/~ is bounded. In what follows we 
shall ignore the 52 and ~2fi terms. 

3. Method of Integral Relations 

In the limit e--*0 the second derivative of u with respect to x is omitted in equation (2). Equa- 
tions (1)and (2) are now integrated with respect to y. In (2) the second derivative of u with res- 
pect to y is converted into a boundary value. In this way the parabolic system is reduced to a 
hyperbolic system for y-averaged values of u and u 2. Various progressing wave solutions may 
then be investigated. 

By integrating (3) and using (6) the pressure p is given as in hydrostatics by 

P = k(r l -Y) .  (8) 

This relation can be taken as a starting point for a derivation of inviscid shallow water theory. 
In the limit e ~ 0  equation (2) may be rewritten as 

0u 0 a. 
a~ + ~x (u2) + __ (uv) = - k  ~x + 1~ ay kay,} (9) 

where (1) and (8) have been used. 
Integrating (9) with respect to y from - h(x, t) to 11 (x, t) and using relations such as 

f~ r= a~/ r=_h ah f ~  au a u dy ~ Ox -~x - -  = u  �9 + u " - -  + dy 
aX h h 

and boundary conditions (4)-(7) we obtain 

a " au r= 
Similarly, integration of (1) with respect to y and application of (4)-(7) yield 

a f "  Or/ + = o .  (11) 

If we consider in (10) and (11) a series 
J 

u = E am(X, t)fm(Y) 
m=! 

where the fro functions are chosen in some appropriate way, there results a system of 2j simul- 
taneous partial differential equations for the y-averaged value of u, i.e., am (x, t). This approach 
is called the method of integral relations and is used in hypersonic theory to calculate numeri- 
cally the solution of flow between a shock and a blunt body [12] (the shock corresponds to the 
unknown free surface). Here we are interested in the analytical properties of the solution and 
we consider only one term of such a series. In this way we at tempt  to get information on the 
viscous decay of waves by approximating in a crude way the vertical profile of u. The impor- 
tant thing is that the viscous bondary condition at the bot tom is being satisfied. 

We consider a velocity profi le  

N + I  U [ 1  (r /-  Y)N] (12) 
u = ~ ~+h (r/+h) N] 

where N = 1, 2, 3 .... and U is an unknown function of x and t. Equations (10) and (11) now 
become 
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8U 4 ( N + l )  U 8U 2 ( N + l )  U 2 D/ 

8-T + 2 N + l  t /+h  8x 2 N + 1  (/7+h) 2 8x 

2 ( N +  1) U 2 dh &l fl(N + 1) U 
2 N + l  (t/+h) 2 dx k ( t l + h ) ~  x - ~ ,  (13) 

8U 8~ 
8x + ~ = 0.  (14) 

The above equations are quasi-linear and hyperbolic. The number of independent variables 
is reduced to two (x and t) and the dependent variables to two (U and ~). 

Before we conclude this section, an important observation must be made. Let us consider 
the relation between the present approach and the inviscid solution. The basic assumption for 
inviscid shallow water theory is that the y-component of the acceleration of the fluid particles 
has a negligible effect on the pressure p, or what amounts to the same thing, that 8p/Ox is 
independent of y [3]. It follows that the x-component of the acceleration of the fluid particles 
is also independent of y; and hence u, the x-component of velocity is also independent of y for 
all t if it was, at any time, say at t = 0. To meet this requirement the velocity profile of u should 
be square for fixed x and t. An inclusion of this as a special case of our general profile (12) can 
be achieved by letting N approach infinity in (12) after we exclude the point of discontinuity 
(y= - h ) w h i c h  gives u=0 .  Physically, u = 0  at y-- - h  corresponds to f l r  For the inviscid 
case (/3 = 0), this no-slip boundary condition must be relaxed. Hence, after setting fl =0, we 
have 

U 
u - as N ~  

which is independent of y as desired. Therefore, the inviscid limit may be obtained by letting 
N ~  ~ (after having set fl = 0), 

4. Smal l  Amplitude Expansion 

4.1. Flat Bottom 

Let 6 be a typical non-dimensional amplitude and assume it is small. This enables us to intro- 
duce the following expansions in powers of 6. For  simplicity we also assume h = 1. Then we can 
write 

0O 

U(x, t) = E U(O( x, t) 6i ] 

i[~ l (15) 
(x, t) ,__Z (x, t) 6' 

Substituting (15) into equations (13) and (14), we obtain, by equating coefficients of like powers 
of 6, equations for the successive coefficients in the series. The terms of first order yield the 
equations 

8U(1~) + k &/(1) _ ( N +  1)flU (1) (16) 
8t 8x 

8UO) + &/(1) _ 0 (17) 
8x 8t 

which are equivalent to 

~2 r/(1) 02r/(1) (N + 1)fl 8t/(1) 
dt 2 - k 8 ~ -  0~t- (18) 
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For initial conditions: ~/(1)(x, 0)= F(x), rl~l)(x, 0)= G(x), the solution of (18) is 

= �89 e -+`N + ')P' {F(x + ~fkt) + F(x- ~kt) + 
t 

~/(!) 

(N + f 
~-,~t 2 \ 2,~/k 

where I (x) is the modified Bessel function of the first kind 

f i 1 e_~r = 1_1_ (_x~ 2' 
I(x) = Jo(ix) = ~ -~ ,=o (s!) 2 \ 2 )  

The first two terms in (19) show that the waves propagate with velocity ~ which is the same 
as if fl = 0 (non-viscous). The waves are exponentially daml~ed, and the damping is faster as N 
increases. In the limit of f l~0 we have inviscid waves. The integral terms indicate the effect 
coming from all points where F and G are not both zero and within distance v/-kt. 

4.2. Uneven Bottom 

In the case that h (x) is not constant, equations (13) and (14) are linearized to yield 

OU ~ f l (N+l)  } 
at § kh --  h2 U 

8U d~l 
ax + - ~  = 0.  

If the 
can be obtained by a transformation as indicated below. 
Let 

(N+ (N+ 1)fl T = 1)fl t X - h - i d x  
h2 ' N//~ 0 

and 

(20) 

magnitude of h'(x) is of a relatively small order, the first order solutions of (13) and (14) 

q (X, T) = t'/(x, t). 

If h' is negligible, equation (20) may be written as 

r/rr-rTxx = -rTr (21) 

which is of the same form as equation (18) and can similarly be solved. We illustrate the effect 
of an uneven bottom on the wave propagation speed and the attenuation factor by considering 

a n  example. 

Example. For h= (1 ___ax) where 0< ax< 1 the wave propagation speed is S_+ =~/k(1 §  
(for 0< ax < 1) and the attenuation factor is ,4_+ = exp { -  (N+ 1)fit~2(1 § a)2}. By denoting the 
propagation speed and attenuation factor for h = l  by So= ~_k and .40=exp[- �89  1)fit], 
we obtain the following inequalities: S_ < So < S +, A _ > -40 > A0 > -4 +. The wave propagation 
speed increases as the depth increases and the damping is more severe. 

4.3. Discussion of  Solution 

The above perturbation is based on the linearized solution which can be expected to be a good 
approximation for small amplitude waves except in certain regions. Linearized solutions are 
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not good for large distances; non-linear effects provide a cumulative influence which ultima- 
tely invalidates the linearized solution. The solution is not adequate in regions where shock 
waves (or bores) are forming. Under the above procedure we are unable to control the region of 
validity of the solution. In the following section we shall obtain a non-linear solution by 
applying the theory of relatively undistorted waves developed by Varley and Cumberbatch. 

5. Slowly-Varying Solution 

The theory of relatively undistorted waves provides solutions describing phenomena where 
the terms "slowly-varying" or "high-frequency" may be applied to the wave motion (see 
Cumberbatch [22], and Varley and Cumberbatch [13]. The technique is based on a scheme of 
successive approximations to a system of hyperbolic equations. The theory, which makes no 
assumptions on the magnitude of a disturbance, is exact for simple waves, acceleration fronts 
and for the formation of shocks. 

Let (fa,f2) - (r/, U). A wave is said to be relatively undistorted infl and f2 with respect to the 
variable x if there exists a family of propagating surfaces e (x, t)= constant, called wavelets, 
such that the magnitude of the rate of change off1 and f2 with x moving the wavelets is small 
compared with the magnitude of the rate of change offi  and f2 with x at fixed t. If t=f(x ,  ~) 
denotes the time of arrival of the wavelet "~" at x and if we write 

f,(x, t)= f,(x, ,(x, ~))= y,.(x, ~), i=  1, 2 
then, in a relatively undistorted wave, 

• 8x i = 1 , 2 .  

It can be shown that the curves c~ = constant are necessarily characteristic curves of the equa- 
tions governing f~. 

5.1. Large co Expansion 

Equations (13) and (14) can be rewritten as 

0U F4(N+I)  0 80  ~ (  2(N+ 1)U2)I 0e/0c~ 
2N+1 ~-  ~xx/& = 

_ F2(N+I)  U2 dh (N+ 1)fl ~ ( 
L 2N+ 1 ~2 dx U -  \k~ 

e0 0o 
o-~ + T d N / ~  - Ox/Ot 

2(N+1) 0 2 00 4 (N+l )  O 
2N+1 8x 2N+1 ~ ~x 

(22) 

(23) 

where ~ (x, c~) = h (x)+ 0 (x, ~), and in what follows we shall drop the "hat" for the sake of con- 
venience. 

An expression based on taking the right-hand sides of (22) and (23) as small is now achieved 
by the formal asymptotic expansions : 

1 
U = Uo(x, c~) + -- Ul(X, a ) + . . .  (24) 

O3 

1 
= t / o ( x , ~ ) + - t / l ( x , ~ ) +  . /25) 

o) 

Journal of Engineering Math., Vol. 3 (1969) 63-77 



70 Shih-liang Wen 

where 

o~ ( x [ 2 ( N + l )  U /2(5 /+1)  U 2 ] .2 
t = -- + + k4 dx (26) co Jo t_ 2--N+i- 4 ~/(2N+ 1) 2 42 d- 

defines the ~ = constant curves as the forward characteristics, and co is a large non-dimensional 
frequency parameter. This asymptotic expansion involving the large parameter co describes 
situations where there are a large number of waves in an attenuation length and any single 
wave changes slowly as it travels, i.e., it is relatively undistorted. It also provides the solution 
for the simple wave (here h=  constant, fl = 0 are necessary for this) and the solution near a 
wave front. As we shall see in later sections that in the limit co~ oe shocks will form arbitrarily 
close to the input station. The condition 

coAl = 0(1) as co~oe (27) 

(where A1 is the amplitude of the pulse at the input station) must be imposed to get a finite 
shockless domain of validity for the relatively undistorted solution. The above restriction on Aa 
implies that we are dealing with small amplitude but finite acceleration waves. 

Since only the first terms of the expansions (24) and (25) will be calculated, the zero subscript 
will be omitted. The equations governing the first terms are as follows, from (23) and (26) 

0a - [ 2 N + 1  4 + V ( 2 N + l )  2 4 z + k4 0-a 

and from the compatibility relation between (22) (23) (26) 

2 ( N + l )  U 2 dh 

2 N + l  42 dx + ( N + l ) f l ~  + 4 
2 ( N +  1) Or/ _ 
2 N + 1  ~-  0x 

_ (_2 (N+1)  U 
\ ~ 1  r 

Since h is not a function of ct and 4 = h + ~, by (28) we have 

k/2(N+I)  U 2 k ( )  OU (29) 
(2N+1) 2 r -t- /] Ox" 

Q ~ )  2 ( N + l )  U . / 2 ( N + l )  U 2 
. . . . . .  rant-- 2 N + l  4 •  42 + k4. 

The solution for equation (30) in implicit form is 

(30) 

A (x) 4 al = (x/U2 + b2 43 + U)"2" (~/U2 + b2 43 - U) ~s 

(x/U2 + b2 43) a4 (U + b l~ /U 2 + b2 43) "5 

where A(x) is a function ofx  to be determined by a boundary condition and where 

b l - 2  2 x / ~ l )  b 2 -  k ( 2 N + l )  2 
- 2 u + 1  ' 2 ( u + 1 )  ' 

- 4 N 2 + 8 N + 3  
ax = 2(2N+ 1) ' 

a 2 =  

(31) 

a3=  2 ( ~ + 5 N + - ~ ,  a 4 = 2 x / ~ + 2 N - 1 ,  a 5 = - 2 N + l .  

In principle, we can solve for t/in equation (29) by replacing U by a function U (4) through 
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relation (31). However, the dependence of U on ~ in (31) is so involved and its use in producing 
further results is forbidden by complexities. For simplicity, we shall consider some special 
cases. 

5.2. First Order Solution 

A useful approximate solution is obtained by taking the linearized solution of (29) and deter- 
mining the characteristics to the first order. 

Let 6 be a non-dimensional typical amplitude taken as small. Consider the case U = 0 (6) and 
~=0(~). 

Then from equation (31) we can express U in terms ofq as 

3(2N+1) ~1 U = F 2(N + 1) A(x)ht2n +l!_~ + w/~h  rl + 
[ 2N + 1 2 N -  1 

[A 2(2N+1) -~ t + (x)h2(N+I)/(2N+I) + 2 N - 1  x//~h +0(62). (32) 

If we consider waves propagating into a quiet region, then ahead of the wave U = 0, t/= 0 on 
~=0. 

This implies that 

a ( x ) -  2(2N + 1) x//~h(2N_ 1)/2(2N + 1) (33) 
2 N -  1 

and from (32) 

U = ,~r~ r/. (34) 

Now equation (29)is linearized to 

(N + 1)flU N ~  ~X U 0(~ 2) 0 (35) h2 + kh + + = . 

Substituting (34) into (35) yields 

- -  + + �88 r / =  0 (36) 

which gives 

r/= B(c 0 exp - �89 + d (37) 
0 

where B (a) is to be determined by the boundary conditions. For example, t/= A1 sin a on x = 0 
gives B(a)=A1 sin a (A1 =constant). Now, by (26), (34) and (37) we obtain 

l" x dx 

t : - + J  ~/~ 1 f x [ (N+l , f l  ~1 } (38) co o x / ~ +  6 N + 5  kB(o~)exp - �89 +�89 dx . 

2(2N + 1) o [ -4/-~h~ 

In the linear approximation in sees. 4.1 and 4.2 the characteristics are straight lines. However, 
(38) shows that the characteristics of the first order slowly-varying solution are, in general, not 
straight. 

5.3. Formation of  Shock Waves  

The shock positions (or critical distances) are obtained by solutions of t ,=0. Differentiating 
(26) with respect to c~, the shock position, is, is given by" 
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O [2(74+1)U / 2 ( N + l )  U 2 
1 f.x.& LZN+I r +V0-N-+I~ 4 z + k~ l 0 
co Jo ~2(N + 1) U / 2 ( N  + 1) U 2 4] 2 dx (39) 

LZN+I  4 + V(2N-+-I~ 42 + k 

where U and ~ are solutions of (28) and (29) subjected to appropriate boundary conditions. The 
corresponding critical time is determined by equation (26) by substituting xs for x. 

In the remaining discussion, we shall use the first order approximations in locating shock 
formation which will give estimates correct to the first order in the amplitude. Now (39) 
becomes 

~ 6 N + 5  ~_k }] 

co ~/~ + 2 ( ~ 1 )  ~/~B(~)exp {F(x) 

where 

i (= r (N+ 1)fl h' 1 
Jo L fih  + �89 - ~  ~ dx . (41) 

We shall consider, the propagation of a wave-front of an arbitrary initial form into a quiet 
region in which the depth varies in an arbitrary way. For the boundary condition B (a)= 0 and 
B'(a)=A 1 >0 (for example, B(a)=A~ sin cot on x =0 at t=0) the shock position, x,, is 

0 - 1 (6N+5)A1 (=* 
co 2 ~ - ~ V / ~ j o  h-}exp {F(x)}dx.  (42) 

If we set fl = 0 and then let N ~  o% we obtain the shock position, x~ ~ for inviscid fluid from 
1 3Ai h~ ( xT~ 

0 = - -  ) h-7/4dx (43) 
co 2w/-k . o 

where h~ =h(0). Equation (43) agrees with the result given by Varley and Cumberbatch in 
their investigation of non-linear theory of wave-front propagation [11], and also recently by 
Burger [23]. 

To investigate the effect of viscosity on shock formation, we shall consider some special cases. 

Case 1. Flat Bottom 
When h=constant=hl,  (42)gives 

2,v/k h~ I1 (2N + 1)(N + 1)fl] 
x s -  (N+l)fl  log - (6N+5)h lcoA1  A" (44) 

The inviscid limit (i.e. fl=0) is 

x~O) = 2(2N+ 1)~/kh~-- 
(6U+5)Aico (45) 

If we denote Co = ~ / ~  as the initial speed of propagation of the wave-front then as N--* oo we 
obtain 

x~O) __ 2C~ (46) 
3kA i 09 

and the corresponding critical time 

tin) _ 2C~ 
g 

3kA1 co 
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which coincide with the results obtained by Stoker [20]. 
For  large co and small ~8 the value of the second term inside the square brackets on the right- 

hand side of (44) is between 0 and 1 (N is usually taken to be 2). Since log (1 - x) < - x for 
Ixl < 1 (xr it can easily be seen from (44) and (45) that 

X~ O) < X s 

provided that x~ exists.This means that the presence of the viscosity is to delay the formation of 
shock at the wave-front. 

We note that the linearized theory limit is A ~ 0 ,  this yields 

x~~ oo and x~ = oo 

i.e. infinitesimal waves never break. 
We also note that shock can be prevented by viscosity, i.e. 

(6N+5)hlAaco 
xs=  oo if/8 = ( 2 N + I ) ( N + I ) "  

Case 2. Beach Problem 

We consider a non-uniformly sloping beach. Let us assume that at time t = 0 a wave-front 
exists in region x < 0 and the water is undisturbed in region 0<  x <  d, where x --d and h(d)=0 
is the shoreline. 

Suppose that the shape of the bottom near x = d  can be represented by a single algebraic 
form h= C1 (d-x)  ~ with q > 0  and C1 >0. Then the shock position is given by 

0 1 co 2'2N+l'x//~.(6N+5)A1 ( xs { (N+l)flfx2x/~C~ t x, ~dx C1-7/4(d-x) -(7/4)" exp , d _ ~ "  �9 (47) 
0 �9 0 

We can see from (47) that the wave may break at some x < d if q >__ 4. If-~ < q < ~ the wave will 
not break in x < d provided that/~ va 0. Ifq < 2, whether or not the wave breaks at x < d depends 
on the behaviour of h (x)" for 0 < x < d. However, all boreless compression waves break at the 
shoreline (this can be seen in section 5.4 or in [11]). 

If x~ = x~ ~ when/~ = 0, it is obvious from (47) that 

X~ O) < X s 

provided that x~ exists. This implies that if the wave breaks when climbing up a sloping beach 
the viscosity effect is to postpone the breaking. 

For the special case when/~=0  and q =  1 (i.e. a uniformly sloping beach h=hl(d-x)/d),  
as N ~  oo 

x~ ~ = d - 3coAl d7/4 (48) 

x/~h~ + 3A1 cod" 

By contrast, the linearized theory limit is 

x~ ~ = d 

i.e. waves only break at the shoreline. 

5.4. Wave Propagation Over Large Distances 

The non-linear effect investigated in the previous section are concerned with the steepening of 
wavefronts and it was seen clearly that the effect of viscosity is to weaken this steepening. An- 
other finite-amplitude effect is a cumulative influence in propagation over large distances. The 
non-linear terms finally dominate the solution and one result is that (to the first order)the 
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solution is independent of its initial data. What is of interest now is the weakening effect of 
viscosity on this property. 

At a wave-front, propagating in a direction of increasing x with boundary condition B(c~) = 0 
and B'(a)=A t on e=0 ,  the slope of the free surface, ~, is obtained from (26) and (37) 

f~0~ 
~ =  - -  ~XXJ  t . . . . .  tant 

At hi I ~  
y -  ~ exp{G(x)} 

o r  

(49) 

f x ] (6N+5)Ath~ h -v14 exp{G(x)}dx -1 (50) 
2 ( 2 N + l ) ~ f k  o 

where 

(N + 1)fl fx  
G(x)- 2x/k o h-~dx (51) 

and h l = h (0). 
A shock begins to form (i.e. 171---' oo) when the term in square brackets in (50) has a zero. In 

linear theory this term is replaced by 1/c9. 
In the inviscid limit (i.e. fl =0  and then N---, oo), (50) gives 

7 (~ - Alhl 3Alhl h-V/4d (52) 

x~ ~h' 2x/k- o 
which coincides with the result obtained by Varley and Cumberbatch [-11]. 

If we consider an expansion wave (i.e. A1 < 0) propagating into a region of unlimited extent 
and bounded depth, as pointed out by Varley and Cumberbatch, (52) shows that a shock 
never forms, 7 (0) decays, and the non-linear terms finally dominate. For large value ofx we have 

y'~ -~h-�88 [f: h-7/4dxl -t (53) 

which is independent of At. Hence, asymptotically an expansion front "forgets" detail of the 
conditions at any finite time. This aspect of non-linearity is in direct contradiction with linear 
theory. 

The effect of viscosity on this property can be seen from (50); the integral in the square brack- 
ets is no longer the dominating term for large values of x. The relative magnitudes between the 
various parameters in (50) dictate the answer. Let us denote (assume it exists) 

(6N + 5)A l h'~ ix 
C. = 2(2N+ 1)~/~J o h-  7/4 exp {G(x)} dx. 

Thus if 1/o~ ~ C., (50) gives 

~'~ - (6N+5) exp {G(x)} exp {G(x)} dx 

which is independent of A t. In this case initial data has no effect on the solution over a large 
distance. A combination of viscous and non-linear effects dominate the solution. If 1/co >> C, 
then we have 

h-~o { (N+l)flf h__~dx} A t  x 

Y x/~h ~ exp 2x/k o 

and the motion is viscous dominated. 
We note that the viscous damping effect disappears when 

[q(N + 1)fl] 
h= 1_ x/kh' d 
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i.e. 

h = - ( 5 q ( N +  x +  2~/k hl}) 2/5 

where q ~ 0 is a real number such that the integral in (50) exists. In this case (50) becomes 

;~ - ~/kh b 2(2N + 1 ) , ~  o h-~d 

where 

(55) 

1 1 1 
a = � 8 8  b = ~ - + ~ q q ,  c =  7 + 2 q  

6. Axially Symmetric Free Surface Flow 

Let us consider an axially symmetric free surface flow; that is a flow in which the distribution 
of all quantities is completely described by its pattern in a meridian plane. Details of this deri- 
vation can be found in Wen [26]. Employing similar techniques as in the previous sections, the 
first order slowly-varying solution gives the slope, S, of the free surface at a wave-front as it 
propagates into a quiet region. 

A ~ hg c ~ (6N + ~ ~ r 
S - x//~h~r~ exp {G(r)} 2(2N+l)x /~  ~r h-7/4r -�89 exp{G(r)}dr (56) 

where 

a(r) = - 2 , fk  h-~dr, c=constant  >0,and hi =h(c).  

The shock position rs is given by 

0 1 (6N+5)Alh~c~-(A~ { (N+l)f l  fi" r} 
= w -  2 (2N+l )x /~  L h-7/4exp 2x/~ h-~d dr. 

In the inviscid limit (i.e. fl = 0 and then N ~  oo) the shock position, r~ ~ is given by 

3Alh~ c �89 ~ r_, h_ V/4 dr . o 
(J) c 

Comparing r~ with r~ ~ for a compression wave-front it is obvious that r~ ~ < r~ provided r~ exists. 
This is to say that the viscous effect is to delay the shock formation. 

For a special case of a flat bottom (i.e. h=  h~), the shock position is found to be 

r(O) = (3Al e)C + xfkh~) 2 
s 9A 2 co 2 c 

and the corresponding critical time 

1 F(3A~ogc+v/kh~) 2 1 
- " 

In the inviscid limit of (56) we have 

S(~  x~ ~h~r~ A ~ h � 8 8  t-~ 3Axh~lc~fr Jc r1-1 h-7/4 r -  �89 d (57) 

which coincides with Varley and Cumberbatch's result [11]. At a shockless expansion wave- 
front propagating into an unlimited extent and bounded depth the non-linear term in (57) 
will eventually dominate for large values of r, i.e. 
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FF S(O) ~ _~h-~r-~ h-7/4r-~-d 
I_ j c  

which is independent of At and has radial decay. For a fiat bot tom (i.e. h = hi) 

S(O) ,,~ _�89 
which shows that the radial decay and non-linear effect dictate the solution. 

When viscosity is included the situation is more complex. Let Cn be the integral term in the 
square brackets of (56). If 0 (1/co)~ 0 (Cn) for large r, we get 

2 (2N+1)  _~ __1 [ fl h_W%_ ~ 1 - ~ S--~ (6N+5)  h "r ~exp {G(r)} exp{G(r)}dr 

in which the non-linearity, viscosity and radial decay all play roles. If 0 (1/co) > 0 (Cn), (56) gives 

S Alcoh~C~exp {G(r)} 
v/~h 31 ~- r~- 

in which the effect of viscosity is dominant but radial decay also plays a role. 
We note that the effects of viscosity and radial decay cancel when h satisfies : 

1 h' 1 (N+ 1)fl 
- - - + - +  - - - 0  
q h r x/~h~ 

where q r 0 is a real number. Then (56) becomes 

x/kAlh"tfl 3Alhal('2~/k Jc rl-t  S = __h----- ~ h-td 

1 1 3 1 7 1 
where a -  , b . . . .  , I -  

4 2q 4 2q 4 2q " 
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